کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل


جستجو


آخرین مطالب



 

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کاملکلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

 

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کاملکلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

 



یکی از عواملی که سازه در مقابل زلزله با آن مواجه است تشدید یا رزونانس است . تشدید زمانی اتفاق می افتد که  سختی سازه، حرکت زمین را به طبقات بالا تر از سطح زمین انتقال میدهد که به صورت انرژی جنبشی و پتانسیل در سازه باقی میماند، اگر این انرژی مسطهلک یا خنثی نشود باعث افزایش تغییر مکان  ها خواهد شد این اتفاق زمانی بحرانی تر است که فرکانس منبع ارتعاش با فرکانس دستگاه یا سازه برابر شود یا به هم نزدیک باشند در این حالت سرعت و تغییر مکان با گذشت زمان به سمت بینهایت میل میکند در طی این مسیر زمانی، لحظه ای میرسد که تغییر مکان ایجاد شده در سازه باعث ایجاد نیروهایی مانند اثر پی دلتا و افزایش   لنگر واژگونی و ایجاد تغییر مکان های ماندگار و… می شودکه از حد توان سازه بیشتر میشود و باعث تخریب موضعی یا کلی در سازه میگردد .

به دلایل بالا کنترل تشدید در سازه از اهمیت زیادی برخوردار است ،برای کنترل تشدید از راه های مختلفی استفاده می شود که در اینجا سه روش را که از تعریف تشدید سرچشمه می گیرد را بیان میکنیم

و یکی از آنها را جهت تحقیق انتخاب می کنیم

  • استفاده از میراگر هایی که نیروی آنها متناسب با افزایش سرعت افزایش میابد و با کنترل انرژی دستگاه تغییر مکان حداکثر را کنترل میکنند.
  • استفاده از میراگر هایی که متناسب با تغییر مکان طبقات انرژی را مسطهلک میکنند مانند بادبند های کمانش ناپذیر
  • ایجاد اختلاف فاز بین فرکانس منبع ارتعاش و دستگاه (چون ماهیت زلزله به گونه ایست که فرکانس مشخص نیست از این روش در مقابل آن استفاده نمی شود) شاید بتوان جدا ساز ها را از این نوع بحساب آورد.
  • مقابله با تغییر مکان های  ایجاد شده متناسب با شتابشان به وسیله نیروی اینرسی ماند یا لختی ذخیره شده بوسیله  جرم هایی که در نقاطی که تغییر مکان ها باید کنترل شوند قرار گرفته اند ، که به میراگر جرمی یا tuned mass damper   شناخته می شود.

در سازه های مختلف میرا گر جرمی با اهداف متفاوتی میتواند مورد استفاده قرار گیرد .  به طور مثال در پل ها میرا گر های جرمی برای کنترل تشدید پیچشی نسبت به محور پل یا کنترل تشدید جابجایی قائم عرشه پل  تحت بار گزاری زلزله یا باد استفاده میشود ، و به خاطر اینکه تشدید در اثر خواص ایرودینامیکی اجزاء باد خور و باد گیر پل بحرانی تر است استفاده از میراگر جرمی برای این منظور بیشتر مورد استفاده قرار میگیرد. در سازه های بلند و مرتفع بتنی و فولادی این اهداف میتوانند باز با هم متفاوت و در برخی مشترک باشند. مثلا پدیده برخاست پی تحت لنگر واژگونی وبرای کنترل آن طراح با محدودیت هایی مواجه است . از جمله آنها محدودیت ضرفیت خاک برای شمع کوبی و تحمل نیروهایی کششی ناشی لنگر واژگونی ،و دیگر محدودیت توجیه اقتصادی پروژه با توجه به هزینه بر بودن افزایش عمق پی و در برخی موارد با افزایش عمق مزاحمت سطح آبهای زیر زمینی و دیگر عوامل مشابه میتواند گزینه های کاهش پدیده برخواست پی را پر رنگ تر کند و آنها را روی میز قرار دهد. نوع مصالح  و هزینه تمام شده آنها تا مرحله آخر نصب هم میتواند ما را به سمت استفاده از میرا گر های جرمی هدایت کند به طور مثال در سازه های بتنی با توجه به اینکه تامیین

خرید اینترنتی فایل متن کامل :

 

 مقالات و پایان نامه ارشد

 مقاومت فشاری در عناصر مختلف با بتن است و مقاومت در برابر تنش و نیرو های کششی برعهده فولاد است و از آنجایی که هزینه استفاده از فولاد حداقل دو برابر هزینه استفاده از بتن است طراح سازه های بلند به سمت کاهش نیروهای کششی و جایگزینی آنها با نیرو های فشاری تمایل می یابد که برای این هدف استفاده از میرا گر های جرمی میتواند کمک کننده باشد. در سازه های فولادی هدف بالا مورد توجه نیست و باتوجه به اینکه تمرکز این مطالعه بر روی سازه های بتنی مرتفع با سیستم های دارای دیوار برشی است برای اختصار از توضیح  درباره  سازه های فولادی صرفنظر میکنیم و موارد اشاره شده در بالا در جهت استفاده از میرا گر های جرمی مورد برسی قرار میدهیم تا بتوانیم، توصیف رفتار و اثرات آن بروی سازه را ارائه کنیم. دلایل دیگری برای استفاده از این سیستم وجود دارند که با توضیح مکانیزم عملکرد ، با آنها آشنا خواهیم شد.

میراگر های جرمی انواع مختلفی دارند مانند : فعال ، غیر فعال ، جرم متمرکز ، مایع و ….

هدف از این تحقیق

  • بررسی انواع میراگر جرمی و نحوه طراحی آنها
  • اهداف ثانویه ای که این طرح برای آنها مفید می باشد(مقایسه اثرات با  میرا گر جرمی و بدون آن با  استفاده از نرم افزار در یک تحلیل دینامیکی برای یک یا چند زلزله خاص )

 

1-2-1 تعریف :

میراگر جرمی تنظیم شده ازسه بخش اصلی تشکیل شده است:

  • جرم میراگر
  • عنصر سختی یا مقاومت که نیرویی متناسب با جابجایی نسبی به وجود آمده بین جرم میراگر و سازه اصلی که در اثر ماند و لختی جرم نسبت به سازه اصلی به وجود آمده بین جرم و سازه اصلی اعمال میکند
  • عنصر میرا گر

که جهت مقابله با حرکت سازه به صورت های مختلف به سازه متصل میشود. یک نمونه ساده از آن شامل: جرم،فنر(سختی)ومیراگر است.  نکته: بقیه اجزاء میراگر جرمی مثل میله های هدایت کننده جرم،ادوات تثبیت و شاسی که اجزاء اصلی میراگر روی آن نصب می شوند، چون مستقیما به سازه متصل می شوند جزئی از جرم سازه به حساب می آیند و در محاسبه جرم میراگر وارد نمی شوند. نمونه هایی از میرا گر یا جاذب جرمی هم هستند که شامل جرم و جک (که با بهره گرفتن از فشار روغن که با کامپیوتر کنترل می شود، شتاب نسبی بین سازه و جرم میراگر ایجاد می کنند (جهت به وجود آوردن نیرو در بازه های زمانی مناسب وجهت مناسب) می باشند. نوع دیگر، میرا گر های ستون مایع می باشند که با فشار مایع  به دیواره متصل به سازه در خلاف جهت شتاب حرکت سازه با جابجایی آن مقابله می کند. در این مطالعه ما به  انواع میرا گر جرمی تنظیم شده می پردازیم که نوع ساده آن  شامل جرم ، فنر ، میراگر می باشد.

نکته: عنصر سختی  یا فنر می تواند از مصالح الاستومر استفاده شود که به دلیل حساسیت تغییرات سختی آنها به تغیرات دما در ساختمان کمتر استفاده می شوند و در این مطالعه سختی را به صورت فنر با سختی خطی  مدل می کنیم. لغت تنظیم شده به دلیل تنظیم فرکانس میراگر با فرکانس طبیعی سازه وتنظیم میرایی عنصرمیراگر، میراگر جرمی است که اصطلاحا میراگر جرمی را با سازه کوک می کنیم. این تنظیم به صورتی است که حداکثر انرژی ممکن از سازه توسط میراگر خنثی شود که اصطلاحا حداکثر انتقال انرژی از سازه به میراگر جرمی تنظیم شده(TMD :Tuned mass damper) گفته می شود.

 


 
موضوعات: بدون موضوع  لینک ثابت
[جمعه 1400-05-08] [ 05:33:00 ب.ظ ]




:

در کنار این پیشرفت ها، کمبودهای شدید و نگران کننده ای وجود دارد، که حاصل ساخت و سازهای غیرفنی و ناامن بوده، به طوری که شهرها و روستاهای کشور با ساختمان های نامقاوم در برابر زلزله، پرهزینه، کم دوام، پر مصرف از نظر انرژی و گران قیمت از نظر نگهداری شکل گرفته است.

در حال حاضر ساختمان های ساخته شده با مصالح بنایی (بخصوص ساختمان های آجری)، درصد بالایی از ساختمان های موجود یا در حال احداث در کشور ما را تشکیل می دهند. مهمترین عامل مقبولیت ساختمان های بنایی در ایران، به ویژه در شهرستان ها در دسترس بودن مصالح، ساده بودن تکنولوژی تولید آجر و بلوک های بنایی، آشنایی سازندگان با نحوه ساخت و ساز یا مصالح بنایی و سرانجام ارزان­تر بودن قیمت تمام شده این قبیل ساختمان ها نسبت به ساختمان های با اسکلت فولادی و بتن مسلح می باشد. با توجه به این که در ساخت بیشتر ساختمان های بنایی ضوابط و معیارهای مهندسی مربوط به مقاومت سازه در برابر زلزله مورد توجه قرار نمی گیرد و معمولاً توسط سازندگان محلی و بدون توجه به اثر تخریبی زلزله، طراحی و اجرا می شوند. رویداد هر زمین لرزه در هر نقطه از کشور فاجعه آمیز بوده و پیامدهای بسیار نگران کننده ای در برخواهد داشت. برای داشتن ساختمان هایی مقاوم در برابر زلزله با سطح ایمنی مطلوب دو مساله اساسی را باید به طور منطقی پاسخ داد.

1)ساختمان هایی که از این به بعد ساخته می شوند چگونه طراحی، محاسبه و اجرا شوند تا دارای مقاومت کافی در برابر زلزله باشند.

2)ساختمان های متعدد موجود که در برابر زلزله آسیب پذیرند چچگونه بررسی و مقاوم سازی شوند.

در این پروژه سعی شده است پاسخی بر پایه تجربیات و پژوهش های انجام گرفته در کشور ارائه شود و روش های اجرایی و مراجع آیین نامه ای جمع آوری شود و در پایان روشی مطمئن برای مقاوم سازی ساختمان های بنایی ارائه گردد.

 

1-2 مرور کارهای گذشته

نصب دستگاه های لرزه نگار در نقاط مختلف جهان از اواخر قرن نوزدهم آغاز شد و طی مدت  کوتاهی به سرعت بر تعداد آنها افزوده شد به کمک آنها مجموعه اطلاعات بسیار ارزشمندی به دست می آید. از میان همه این اطلاعات شاید یک مطلب بیش از همه شایان توجه باشد و آن اینکه، زلزله ها به هر سبب که ایجاد شده باشند- تکرار پذیرند و تنها راه مقابله با زلزله، طراحی و اجرای ساختمان ها به گونه ای است که تاب ایستادگی در مقابل زلزله های مخرب را داشته باشد.

خرید اینترنتی فایل متن کامل :

 

 مقالات و پایان نامه ارشد

 

به دلیل برجای ماندن تعداد زیادی از ساختمان های بنایی که در آن ها اصول آیین نامه 2800 رعایت نشده است و رفتار نامطلوب این ساختمان ها در زلزله های گذشته، ضرورت امر مقاوم سازی آنها، محققان را برآن داشته تا درصدد تدوین آیین نامه هایی برای بهسازی این ساختمان برآیند. در ادامه برخی از این آیین نامه ها را که در متن پایان نامه به تفضیل در مورد آن ها بحث شده را مرور می نماییم.

آیین نامه FEMA-154 ایالات متحده آمریکا [2] یک روش ارزیابی سریع چشمی را ارائه می دهد. این روش برای ساختمان های موجودی می باشد که هنوز در معرض زلزله قرار نگرفته اند و روش های موجود در این آیین نامه ماحصل تجارب و بررسی خرابی های زلزله گذشته در سطح ایالات متحده می باشد. نتیجه این بررسی ها میزان آسیب پذیری ساختمان را در یک زلزله احتمالی نشان می دهد.

دستورالعمل Applied Technology Council) ATC-20) [3] برای کمک به تعیین میزان امنیت در ساختمان هایی می باشد که در معرض زلزله قرار گرفته اند. نیروهای متخصص، کار خود را با نیروهای امدادی آغاز می کنند و وضعیت ایمنی هر ساختمان را با نصب علایم، مشخص می نمایند. به طور خلاصه آیین نامه ATC-20 را می توان راهنمای ارزیابی سریع سطح ایمنی ساختمان های آسیب دیده از زلزله دانست.

دستورالعمل بهسازی لرزه ای ساختمان موجود که اولین ویرایش آن را در دفتر تدوین معیارهای سازمان مدیریت و برنامه ریزی در خرداد ماه 1381 کشور با همکاری پژوهشگاه بین المللی زلزله شناسی و مهندسی زلزله منتشر کرد. این دستورالعمل در حقیقت اولین و تنها آیین نامه ملی موجود در زمینه ارزیابی آسیب پذیری و بهسازی لرزه ای ساختمان ها می باشد.

 


 
موضوعات: بدون موضوع  لینک ثابت
 [ 05:33:00 ب.ظ ]




. 28

3-2- شکست لرزهای انواع حایل ها 28

3-3- پاسخ دینامیکی دیوارهای حایل.. 28

3-4- انواع روش های طراحی دینامیکی دیوار حائل.. 29

3-5- آنالیز تعادل حدی.. 31

3-5-1- حالت شبه استاتیکی.. 31

3-5-2- روش مونونوبه اکابه. 32

3-5-3- روش آرانگو(1969Arango,) 35

3-5-4- چود هاری (Choudhury, 2002) 36

3-6- روش شبه دینامیک…. 42

3-6-1- استیدمن و زنگ ( steedman- zeng , 1990 ) 42

3-6-2- چودهاری- نیمبا لکاری (Choudry-nimblakar 2005) 44

3-7- آنالیز بر پایه جابجایی.. 45

3-8- مقایسه فشار خاک لرزه ای محاسبه شده با بهره گرفتن از روش های مختلف…. 46

3-9- حل با فرم بسته با بهره گرفتن از رفتار الاستیک یا ویسکوالاستیک…. 46

3-9-1- وود (wood, 1973) 46

3-9-2- ولتسوس و یونان (Veletsos and younan , 1994) 47

3-10- آنالیز عددی.. 49

3-10-1- الهمود و ویتمن (Al-Homoud and Whitman, 1999) 50

3-10-2- تحقیقات گرین وابلینگ (Green and Ebeling, 2003) 50

فصل چهارم: مدلسازی و تحلیل نتایج.. 52

4-1- پیشگفتار. 53

4-2- روش المان محدود. 53

4-3- مدل های رفتاری خاک… 54

4-4- مدل. 54

4-5- المان ها 54

4-6- صفحات… 54

4-7- ساخت مرحله ای.. 55

4-8- شرائط لازم برای اعمال به هندسه مدل در شرائط دینامیکی.. 55

4-8-1- مرزهای جاذب… 55

4-8-2- میرایی.. 56

4-9- مدلسازی.. 56

4-10- مدلسازی زلزله. 63

4-11- بررسی دیوار حائل 6 متری.. 64

4-12- نتایج زلزله UPLAND برای دیوار حائل 6 متری.. 65

4-13- نتایج زلزله GILORI برای دیوار حائل 6 متری.. 67

5-14- مقایسه نتایج دو زلزله UPLAND و GILORI برای نقاط انتخابی.. 69

4-15- بررسی دیوارحائل 9 متری.. 71

4-15-1- زلزله Gilori 71

4-5-2- زلزله Upland.. 73

4-16- بررسی دیوار 12 متری.. 77

4-16-1- زلزله Gilori 77

4-16-2- زلزله Upland.. 79

4-17- کلیات… 83

منابع و مآخذ: 85

 

فهرست اشکال

شکل1-1- نیروهای وارده بر دیوارهای حائل.. 4

شکل1-2- دیوار حائل وزنی ونیمه وزنی.. 5

شکل1-3- دیوارحائل پشت بنددار و پایه دار. 6

شکل1-4- (a)دیوار حائل الواربست (b)دیوار حائل صندوقچه ای© دیوار حائل گابیونی.. 8

شکل1-5- دیوار MSE روکش شده توسط (a)پانلهای پیش ساخته(b) با بلوکهای پیش ساخته. 8

شکل1-6- دیوار ساخته شده از(a)شمعهای مماسی(b) شمعهای متقاطع.. 10

شکل2-1- نحوه تعیین طیف پاسخ جابجایی.. 18

شکل2-2-نحوه تعیین طیف  پاسخ شبه شتاب… 18

شکل2-3-طیف پاسخ زلزله های ثبت شده در ایستگاه السنترو در طی سال های…. 19

شکل2-4-طیف طراحی میانگین و میانگین بعلاوه انحراف از معیار استاندارد برای میرایی 5%. 20

شکل2-5-نحوه ساخت طیف طراحی خطی.. 21

شکل2-6-ساخت طیف طراحی برای احتمال 84.1% و میرایی 5%. 22

شکل2-7-میانگین طیف های پاسخ برای شرایط مختلف محل.. 23

شکل2-8-میانگین طیف های پاسخ شتاب برای شرایط مختلف محل.. 23

شکل2-9-طیف های نسبی شتاب در 2 درصد میرایی برای چهار طبقه بندی خاک… 24

شکل2-10-تاثیر بزرگی زمین لرزه بر شکل های طیفی.. 25

شکل2-11-طیف طرح برای منطقه ای تحت تاثیر زمین لرزه ی حاصل از دو گسل.. 26

شکل3-1-سطح شکست و نیروهای در نظر گرفته شده در روش مونونوبه اکابه. 33

شکل3-2-مدل تحلیلی چودهاری.. 37

شکل3-3-دیاگرام آزاد مدل چودهاری.. 37

شکل3-4-سطح شکست و نیروها 40

شکل3-5-سیستم در نظر گرفته شده توسط استیدمن و زنگ…. 43

شکل3-6- سیستم آزمایش شده توسط ولتسوس و یونان. 48

شکل4-1- هندسه مدل به همراه مرزهای جاذب و جابجایی اعمال شده به کف مدل. 56

شکل4-2- مرحله اول خاکریزی.. 58

شکل4-3- مرحله دوم خاکریزی.. 58

شکل4-4- مرحله سوم خاکریزی.. 59

شکل4-5- مرحله چهارم خاکریزی.. 59

شکل4-6-توزیع فشار در دیوار پس از اجرای خاکریزی در چهار ضریب سختی چرخشی متفاوت… 61

شکل4-7-فشار جانبی دینامیکی محاسبه شده برای دیوار حائل طره توسط پانتامان. 63

شکل4-8- فشار جانبی دینامیکی محاسبه شده برای دیوار حائل وزنی توسط پانتامان. 63

شکل4-9- توزیع تنش جانبی در حالت استاتیکی برای دیوار حائل 6 متری.. 64

شکل4-10- نمودار توزیع تنش جانبی برای دیوار حائل 6 متری در حالت استاتیکی.. 65

شکل4-11- جابجایی افقی در مدل دیوار حائل 6 متری پس از زلزله. 65

شکل4-12- تاریخچه شتاب قائم در مدل دیوار حائل 6 متری پس از زلزله. 66

شکل4-13- تاریخچه شتاب افقی در مدل دیوار حائل 6 متری.. 66

شکل4-14- توزیع فشار جانبی دینامیکی در دیوار حائل 6 متری.. 66

شکل4-15- نمودار توزیع تنش جانبی دینامیکی در دیوار حائل 6 متری.. 67

شکل4-16- جابجایی افقی در مدل دیوار حائل 6 متری پس از زلزله. 68

شکل4-17- تاریخچه شتاب قائم در مدل دیوار حائل 6 متری پس از زلزله. 68

شکل4-18- تاریخچه شتاب افقی در مدل دیوار حائل 6 متری.. 68

شکل4-19- توزیع فشار جانبی دینامیکی در دیوار حائل 6 متری.. 69

شکل4-20- نمودار توزیع تنش جانبی دینامیکی در دیوار حائل 6 متری.. 69

شکل4-21- تاریخچه جابجایی در نقاط انتخابی مدل دیوار حائل 6 متری.. 69

شکل4-22- تاریخچه جابجایی در نقاط انتخابی مدل دیوار حائل 6 متری.. 70

شکل4-23- مقایسه نیروی افقی به وجد امده در دیوار حائل 6 متری.. 70

شکل4-24- جابجایی افقی در مدل دیوار حائل 9 متری پس از زلزله. 71

شکل4-25- تاریخچه شتاب افقی در مدل دیوار حائل 9متری.. 71

شکل4-26- تاریخچه شتاب قائم در مدل دیوار حائل 9متری.. 72

شکل4-27- توزیع فشار جانبی دینامیکی در دیوار حائل 9متری.. 72

شکل4-28- نمودار توزیع تنش جانبی دینامیکی در دیوار حائل 9متری.. 73

شکل4-29- جابجایی افقی در مدل دیوار حائل 9 متری پس از زلزله. 73

شکل4-30- تاریخچه شتاب افقی در مدل دیوار حائل 9متری.. 74

شکل4-31- تاریخچه شتاب قائم در مدل دیوار حائل 9متری.. 74

شکل4-32- توزیع فشار جانبی دینامیکی در دیوار حائل 9متری.. 74

شکل4-33- نمودار توزیع تنش جانبی دینامیکی در دیوار حائل 9متری.. 75

شکل4-34- مقایسه نیروی افقی به وجود آمده در دیوار حائل 9متری.. 75

شکل4-35- تاریخچه جابجایی در نقاط انتخابی مدل دیوار حائل 9متری.. 76

شکل4-36- تاریخچه جابجایی در نقاط انتخابی مدل دیوار حائل 9متری.. 76

شکل4-37- جابجایی افقی در مدل دیوار حائل 12متری پس از زلزله. 77

شکل4-38- تاریخچه شتاب افقی در مدل دیوار حائل 12متری.. 77

شکل4-39- تاریخچه شتاب افقی در مدل دیوار حائل 12متری.. 78

شکل4-40- توزیع فشار جانبی دینامیکی در دیوار حائل 12متری.. 78

شکل4-41- نمودار توزیع تنش جانبی دینامیکی در دیوار حائل 12متری.. 79

شکل4-42- جابجایی افقی در مدل دیوار حائل 12متری پس از زلزله. 79

شکل4-43- تاریخچه شتاب افقی در مدل دیوار حائل 12متری.. 80

شکل4-44- تاریخچه شتاب افقی در مدل دیوار حائل 12متری.. 80

شکل4-45- توزیع فشار جانبی دینامیکی در دیوار حائل 12متری.. 80

شکل4-46- نمودار توزیع تنش جانبی دینامیکی در دیوار حائل 12متری.. 81

شکل4-47- مقایسه نیروی افقی به وجود امده در دیوار حائل 9متری.. 81

شکل4-48- تاریخچه جابجایی در نقاط انتخابی مدل دیوار حائل 9متری.. 82

شکل4-49- تاریخچه جابجایی در نقاط انتخابی مدل دیوار حائل 9متری.. 82

 

 

فهرست جداول

جدول1-1- انواع زاویه های اصطکاک داخلی برای کاربرد در مسائل مهندسی.. 13

جدول2-1-  ضرایب بزرگنمایی برای ایجاد طیف طراحی خطی.. 21

جدول 3-1- مقایسه مقادیر  های بدست آمده از روش چودهاری و دیگر تئوری های لرزه ای.. 42

جدول 3-2- مقایسه فشار خاک لرزه ای محاسبه شده با بهره گرفتن از روش های مختلف…. 46

جدول4-1- مشخصات مصالح خاکی.. 57

جدول4-2- مشخصات المان Plate. 57

جدول 4-4- مقادیر شتاب افقی (متر/ مجذور ثانیه) حاصل از نرم افزار PLAXIS.. 61

جدول 4-5- مقادیر ضریب فشار جانبی فعال در حالت دینامیکی.. 62

جدول 4-6- مقایسه مقادیر فشار جانبی حاصل از تئوری و نرم افزار PLAXIS.. 84

 

فصل اول:
دیوار حائل

 

1-1- تاریخچه ساخت سازه های حائل

از تکنیک دوم بیشتر در ساخت هرم های سنگی در مصر استفاده شده است. آیده ساخت سازه هایی با این تکنیـک بـه معمـاران مصری کمک کرد تا بلندترین هرم سنگی تاریخ به ارتفاع 60 متر  را بسازد. آنهـا در سـاخت هـرم تنهـا از دیوارهـای شـمالی– جنوبی و شرقی– غربی استفاده نمودند. دیوارهای مربعی هم مرکز با محور هرم هستند و این مربع هـای تودرتـو بـه فواصـل 5 ذرع مصری (6/2 متر ) از هم فاصله داشتند. برای جلوگیری از واژگونی دیوارهای حائل با زاویه72درجـه نـسبت بـه افـق و بـه صورت مایل اجرا شده اند. این دیوارها بوسیله تخته سنگ های تراشیده شده ساخته شده اند و فواصل بین دیوارها بوسیله سـنگ ریزه های حاصل از تراشیدن تخته سنگها پر شدهاند(علیرضا زرکامی، 1385).

خرید اینترنتی فایل متن کامل :

 

 مقالات و پایان نامه ارشد

 

 

1-2- انواع سازه های حائل

 

انواع متداول این دیوارها، دیوارهای ثقلی، طره ای و پشت بنددار است.

شکل1-1- نیروهای وارده بر دیوارهای حائل

 

برخی از کاربردهای سازه های حائل عبارت است از:

  • بزرگراه ها و یا راه آهن هایی که خط پروژه آنها نسبت به زمین های مجاور خیلی بالاتر و یـا پـایین تـر اسـت و حـریم راه آنقـدر وسیع نیست که نتوان این اختلاف را به کمک شیروانی حل کرد.
  • کوله پل ها
  • ساختمان هایی که روی زمینهای شیبدار ساخته می شوند.
  • در سازه های ساحلی برای ساختن محوطه پهلو گرفتن کشتی ها
  • سازه های کنترل سیلاب ها (Flood walls)
  • زمین های ناپایدار، که از دیوارهای حائل برای جلوگیری از زمین لغزش استفاده می شود. (Coduto, 2003)

 

1-3- دیوارهای حائل خاکریزی شده

1-3-1- دیوار حائل وزنی درجا[2]

دیوارهای حائل وزنی اجرا شده در محل عموماً دارای اشکال ذوزنقه ای هستند و معمولاً بوسیله بتن و یا مـصالح بنـایی سـاخته مــی شــوند. دیوارهــای وزنــی بــه وســیله وزن خــود در برابــر واژگــونی و لغــزش ناشــی از نیروهــای جــانبی مقاومــتمیکنند. (TDOT, 2004) در این نوع سازه های حائل تغییر شکل بدنه دیوار در تماس با خاک ناچیز بوده لذا نیروهای وارده تابع تغییر مکان دیوار می باشند. (رهائی،1375) تا ارتفاع 5 متر و شرایط معمولی بارگذاری ساخت آنها به لحاظ اقتصادی بهینه بوده و با انتخاب هندسه مناسب مشکلات پایداری داخلی و خارجی معمولاً در مورد آنها مطرح نمی باشد.(اسلامی ،1384) در برخی موارد با بهره گرفتن از مقدار محدودی میله گرد از عرض دیوار حائل وزنی مقداری کاسته می شـود. ایـن میلـه گردهـا درخمش با مصالح بنایی مشارکت می کنند. به این دیوارها، دیوارهای حائل نیمه وزنی  می گویند. (علیرضا زرکامی، 1385)

شکل1-2- دیوار حائل وزنی ونیمه وزنی

1-3-2- دیوار های حائل طره ای[3]

این نوع دیوارها معمولاً از بتن مسلح ساخته می شوند و متشکل از سه قسمت اصلی به قرار ساقه (دیواره) پاشنه (قسمتی از پی که زیر خاکریز است) و پنجه (قسمتی از پی که جلوی خاکریز است) می باشند. ارتفاع متداول و اقتصادی این دیوارهـای بتنـی6 تا 9 متر بوده و مقاومت داخلی آنها در برابر تنشهای کششی با آرماتورگذاری تـامین شـده و پایـداری خـارجی آنهـا عمـدتاً توسط وزن خاک روی پاشنه و وزن دیوار تامین می شود. (علیرضا زرکامی، 1385)

 

1-3-3- دیوارهای پشت بنددار و پایه دار[4]

شکل1-3- دیوارحائل پشت بنددار و پایه دار

 

1-4- دیوار وزنی پیش ساخته

1-4-1- دیوارهای الوار بست

دیوار الوار بست نوعی حائل وزنی است که بوسیله یک سری از قطعات قفل و بست شده بتنـی مـسطح یـا غیـر مـسطح پـیشساخته، اجرا میشود. دیوارهای الواربست چوبی به دو صورت ساخته می شوند. هم بصورت المان های چوبی که بوسیله میخ های فولادی به یکدیگر میخ کوب می شوند و یا بوسیله قطعات چوبی پیش ساخته اجرا می شوند. این نوع دیوارها شامل یک سـری تیرهای عرضی و طولی به صورت یک در میان است. هر واحد این نوع دیوارها بوسیله مصالح دانه ای با نفوذپذیری بالا پرشـده و متراکم می گردد(علیرضا زرکامی، 1385).

 

1-4-2- دیوار حائل صندوقچه ای[5]

دیوارهای حائل صندوقچه ای فولادی و بتنی دیوارهای وزنی هستند که از اتصال صندوقچه های سر باز یـا سـر بـسته سـاخته می شوند. در مورد دیوارهای بتنی هر واحد دیوار شامل یک سری از قطعات پیش ساخته بتن مسلح اسـت کـه ماننـد بلوک هـای ساختمانی در محل قرار داده می شوند(علیرضا زرکامی، 1385).

[1]megalithic

[2] Cast in place (CIP) Gravity walls

[3] Cantilever walls

[4] Counterfort Walls and Buttressed Walls

[5] Bin walls

 


 
موضوعات: بدون موضوع  لینک ثابت
 [ 05:32:00 ب.ظ ]




بالا و اینکه هر دو سیستم ذکر شده فوق­الذکر جدید و گران می­باشند زیرا در سیستم­های دیوار برشی فولادی از ورق فولادی گسترده استفاده می­ شود و در سیستم مهاربند واگرا به منظور فعال کردن ظرفیت استهلاک انرژی پیوندهای برشی المان­های قطری سنگین مورد نیاز است که این المان­های سنگین فقط در هنگام اعمال بارهای جانبی شدید به کار خواهند افتاد احتیاج به بررسی و مقایسه رفتار لرزه­ای دو سیستم محسوس می­باشد. در این تحقیق ابتدا به معرفی و بررسی کامل دو سیستم دیوار برشی فولادی و مهاربند واگرا می­پردازیم، به مواردی که در آیین نامه­های مختلف درخصوص این دو سیستم آمده است اشاره می­نماییم به آزمایشات مختلفی که بر روی این سیستم­ها در مناطق مختلف جهان صورت گرفته است می­پردازیم و نتایج حاصله را مورد بررسی قرار می­دهیم، نمونه­های اجرا شده­ی این سیستم­ها در مناطق مختلف جهان را بررسی می­کنیم و رفتار آنها را در مقابل زلزله­های رخ داده در عمل ارزیابی     می­کنیم، نحوه­ اجرای این سیستم­ها در عمل و مزایا و نواقص هر یک از مورد بررسی قرار خواهیم داد. در ادامه این بررسی با توجه به اینکه تأمین سختی، مقاومت نهایی و شکل­پذیری اهداف اصلی طراحی لرزه­ای سازه­ها می­باشند و با توجه به اینکه مطالعه

خرید اینترنتی فایل متن کامل :

 

 مقالات و پایان نامه ارشد

 رفتار سازه­ها با روش­های مختلف از جمله روش دقیق و روش آزمایشگاهی و تجربی امکان­ پذیر است و یکی از روش­های مناسب که به علت سرعت و دقت بالا و هزینه کم نسبت به سایر روش­ها ارجحیت بیشتری دارد، تحلیل­های نرم افزاری می­باشد، پس با توجه به امکانات موجود در این تحقیق از نرم افزارهای قدرتمند ایتبس، سپ 2000 و نرم افزار عناصر محدود فوق­العاده قدرتمند آباکوس جهت مدل سازی و تحلیل خطی و غیرخطی استفاده خواهیم نمود، و به این نحو عمل می­نمایم که پس از طراحی ساختمان­های 1 تا 5 طبقه منظم به این نحو که تا حد امکان شرایط آیین­نامه­ ها درخصوص آنها رعایت شود. با بهره گرفتن از نرم افزارهای شرکت سی.­اس.­آی[1] و با توجه به مفاد دستورالعمل­های فما 356- فما 274 – فما 440 – ا.ِتی.­سی 19[2]- اِ.تی.­سی 40[3] و نشریه 360 اقدام به انجام آنالیز پوش­آور می­نمایم و منحنی­های ظرفیت را به دست می­آوریم، پس از به دست آوردن منحنی­های ظرفیت به کمک آنها و روش­های ارائه شده در دستورالعمل­ها و روش پروفسور یوانگ اقدام به    محاسبه­ی سختی- مقاومت نهایی- شکل پذیری- ضریب رفتار و میرایی سیستم­ها می­نمایم و سپس نتایج را با هم مقایسه می­کنیم. در ادامه­ کار بعد از صحت­سنجی نرم افزار آباکوس با بهره گرفتن از مدل یک طبقه­ی بِرمن و همکاران در فضای دو بعدی تنها دهانه­ی مهاربندی (یک دهانه) را مدل سازی می­نمایم و آنالیز پوش­آور را انجام می­دهیم و با مقایسه منحنی­های پوش­آور با همدیگر به بررسی امکان صحیح بودن نتایج حاصل از  مرحله­ قبل می­پردازیم، در نهایت به ارائه نتایج می­پردازیم.

[1]- CSI

[2]- ATC-19

[3]- ATC-40

 


 
موضوعات: بدون موضوع  لینک ثابت
 [ 05:31:00 ب.ظ ]




در اواخر دهه هشتاد میلادی تقریباً یک مجموعه کاملی از دانش برای سیستم­های خطی به وجود آمده بود (که شامل تکنیک‌های بسیار قوی از تحلیل کنترل نیز می‌شد). تلاش برای استفاده از پیشرفت‌های تئوری سیستم‌های خطی در سیستم‌های غیرخطی بسیاری از محققان را به حرکت واداشت. پیشرفت­هایی در این مورد در سیستم­های غیرخطی در موارد مفهومی و مهم، از قبیل کنترل­پذیری، رؤیت­پذیری و تحقق­پذیری با موفقیت به حد کمال رسیدند. با وجود پیشرفت­های عمده تا به امروز، تکنیک­های جامع برای پایدارسازی سیستم­های غیرخطی فقط برای کلاس­های مشخصی به وجود آمده است، که این به خاطر پیچیدگی بسیار زیاد رفتار سیستم­های دارای دینامیک غیرخطی می­باشد، که مانع از ایجاد یک تئوری یکپارچه می­گردد. از طرف دیگر، پیشرفت­های تکنولوژیکی جدید، یک سری مسأله­های مهندسی را ایجاد کرده بود که اثرات غیرخطی مشخصی را باید به حساب می­آورد، که متاسفانه تئوری پیشرفته نتوانست با آنها به صورت موفقیت‌آمیز برخورد نماید، زیرا ساختار­های قابل قبولی که با بصورت تحلیلی بدست آمده­اند، لزوماً با محدودیت­های فیزیکی منطبق نیستند (اورتگا، 1998).

 

موتورهای القایی به دلیل قابلیت اطمینان، استحکام و قیمت کم، امروزه یکی از مهمترین محرکه های سیستم‌های صنعتی محسوب می‌شوند. با این وجود، مبحث کنترل این موتورها به دلیل وجود دینامیک‌های تزویج شده چند ورودی چند خروجی با پیچیدگیهای خاصی همراه است. با پیشنهاد روش کنترل برداری در اواخر دهه هفتاد امکان کنترل مستقل گشتاور و شار مغناطیسی برای این موتور فراهم آمد. این روش در شرایط گذرای شار، توانایی کنترل مستقل شار و گشتاور را ندارد. از طرف دیگر تخمین شار روتور ارتباط زیادی به مقدار واقعی مقاومت روتور دارد و مقاومت روتور به دلیل اثرات پوستی و تغییرات حرارتی موتور، مقدار ثابتی نیست. علاوه بر مسئله تاثیر نامعینی های پارامتری برعملکرد موتور، این روش نیاز به انتقال دستگاه‌های مختصات و نیز رگولاتورهای اضافی برای کنترل جریان موتور نیز دارد.

 

 

خرید اینترنتی فایل متن کامل :

 

 مقالات و پایان نامه ارشد

 

انتخاب گردد. به علاوه مهمتر از آن اینكه ایجاد و اجرای آن روش كنترلی ساده باشد. مثلاً الگوریتم ساده، تنظیم ساده و توانایی ایجاد كنترل‌كننده ساده‌تر كه منجر به كنترل‌كننده ارزانتری خواهد شد.

 

 

 

با توجه به اینكه در كشور ما تحقیق و پیاده­سازی این روش در كاربردهای مهندسی مورد توجه قرار نگرفته است بر آن شدیم تا در این پایان نامه یک روش بهبود یافته از آن را در كنترل موتور القایی طراحی نموده و نتایج شبیه‌سازی و مزایا و معایب این روش را در این مورد خاص بیان نماییم. امید است محققان عزیز كشورمان با تحقیق بر روی كاربردهای بسیار این روش نسبتاً جدید، در راستای پیشرفت هر چه بیشتر میهن اسلامی‌مان گام‌های بلندی بردارند.

 

 

  1. Passivity
  2. Euler-Lagrange
  3. Energy Saving
  4. Feedback Linearization
  5. Energy Shaping

در این پایان نامه ابتدا در فصل 1 به بیان خلاصه­ای از پیشینه پژوهش می­پردازیم. در ادامه در فصل 2 به معرفی چند انواع روش های كنترل موتور القایی می­پردازیم. در فصل 3 تعریف پسیویتی و معادلات حركت اولر-لاگرانژ خواهد آمد. سپس اثبات پسیو بودن این سیستم­ها و معادلات فیزیكی و انرژی كل سیستم مورد بررسی قرار میگیرد. در فصل 4 اثبات اولر-لاگرانژ و پسیویتی موتور القایی مورد بحث قرار میگیرد و سپس مدل مناسب برای موتور القایی تعریف شده و كنترل­كننده مبتنی بر پسیویتی برای رهگیری گشتاور- سرعت ارائه شده توسط اورتگا ‌‍[3]، با جزئیات آن معرفی و سپس كنترل­كنندة پیشنهادی طراحی و تشریح می­ شود. در نهایت در فصل 5 نتایج شبیه­سازی این كنترل­كننده با كنترل­كننده ارائه شده توسط اورتگا مقایسه می­ شود.

 


 
موضوعات: بدون موضوع  لینک ثابت
 [ 05:30:00 ب.ظ ]
 
مداحی های محرم