کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل


جستجو


آخرین مطالب



 

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کاملکلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

 

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کاملکلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

distance from tehran to armenia
 



، اهداف و ساختار پایان نامه را معرفی می­ کند؛ در فصل دوم پس از نگرش اجمالی به پدیده روانگرایی و آسیب­های سطحی ناشی از آن و نیز نحوه تاثیر روانگرایی بر سازه­های زیرزمینی و راهکارهای مقابله با این اثرات، روش­های مختلف ارزیابی پتانسیل روانگرایی مورد بررسی قرار می­گیرد. در فصل سوم به تئوری روش زمین­آمار و مرور مطالعات موردی صورت گرفته در زمینه استفاده از روش کریجینگ در ارزیابی پتانسیل روانگرایی خاک­ها پرداخته می­ شود.
فصل چهارم به معرفی وضعیت لرزه­خیزی، سطح ایستابی، زمین­ شناسی و نیز داده ­های حاصل از مطالعات ژئوتکنیکی صورت گرفته در مسیر خط دو متروی تبریز اختصاص یافته است.
در فصل پنجم، با ترکیب روش کریجینگ معمولی[9] و رابطه تجربی یود و همکاران[10] مقادیر فاکتور ایمنی در برابر روانگرایی در نهشته خاک واقع در مسیر خط دوی مترو تبریز تخمین زده می­ شود؛
در نهایت در فصل ششم ضمن نتیجه ­گیری از مجموع بررسی­ها و محاسبات انجام شده، پیشنهادهایی جهت ادامه مطالعات ارائه می­ شود.
2-1-پدیده روانگرایی
روانگرایی به معنی پدیده شکل­ گیری لرزه­ای فشارهای آب منفذی بزرگ در خاک­های دانه­ای است که طی آن خاک از یک وضعیت جامد به حالت مایع تبدیل می­ شود [7].

 

در خاک­های ماسه­ای، قبل از وقوع زلزله ذرات خاک در تماس با یکدیگر قرار دارند (شکل 2-1-الف). این امر موجب می­ شود که مقاومت برشی خاک، τ، پایداری سازه­ای که در سطح زمین قرار دارد را تامین نماید. نهشته­[11]های ماسه­ای نسبتا سست ریزدانه که در زیر سفره آب زیرزمینی قرار گرفته­اند، هنگامی که تحت اثر بارهای لرزه­ای قرار ­گیرند تمایل به کاهش حجم پیدا می­ کنند. در صورتیکه زمان کافی جهت خروج آب منفذی از بین دانه­ های خاک موجود باشد، خاک حالت متراکم­تری گرفته و مقداری آب از آن خارج می­گردد. با توجه به اینکه در حین زلزله و بارگذاری­های سریع زمان کافی جهت زهکشی وجود ندارد، در اثر تمایل به تراکم فشار آب منفذی، u، افزایش می­یابد. با تداوم ارتعاش، بر میزان فشار آب به تدریج افزوده شده و به مقدار تنش کل سربار، σ، نزدیک می­ شود. در نهایت زمانی فرا می­رسد که تنش کل برابر فشار آب منفذی گردد. در این حالت بر اساس رابطه زیر تنش سربار موثر، ، برابر صفر شده و تماس بین دانه­ها از بین می­رود:
 (2-1)                                                                         
از طرف دیگر با توجه به اینکه در خاک­های دانه­ای اشباع، مقاومت برشی با بهره گرفتن از معادله 2-2 بدست می­آید، با از بین رفتن تنش موثر، ماسه ناگهان مقاومت برشی خود را از دست داده و رفتاری شبیه رفتار یک مایع از خود نشان می­دهد. این پدیده روانگرایی نامیده می­ شود (شکل 2-1-ب) .
(2-2)                                                                                                                 τ= σ’ tanφ’  
که درآن،  به معنی زاویه اصطکاک داخلی خاک می­باشد.
پس از وقوع روانگرایی، همزمان با خروج آب، تماس بین ذرات خاک مجددا برقرار شده و حالتی مانند آنچه که در شکل 2-1-ج نشان داده شده است، بوجود می ­آید که همان گیرش مجدد توده خاک، لیکن پس از وقوع مقدار زیادی نشست است. کاهش حجم در خاک نشست کرده، برابر حجم آب حفره­ای است که از خاک خارج شده است. مکانیزم پدیده روانگرایی در خاک­های واقعی بسیار پیچیده­تر هست، زیرا از روی هم قرار گرفتن ذرات با اندازه­ های مختلف تشکیل یافته­اند [8].
شکل2-1- شماتیک رفتار ذرات خاک الف) قبل، ب) بعد، ج) حین روانگرایی [8].
2-3- آسیب­[12]های ناشی از روانگرایی خاک­ها
به طور تقریبی می­توان گفت که در پی تمامی زمین­لرزه­های بزرگ، شواهد روانگرایی وجود داشته است [10]. این پدیده اغلب در عمق اتفاق می­افتد که به دلایل مختلفی ممکن است تا سطح زمین توسعه نیابد. بنابراین شواهد سطحی بیانگر وقوع روانگرایی خاک هستند، اما عدم وجود مشاهدات سطحی الزاما به معنای عدم وقوع آن نیست [11]. آسیب­های ناشی از روانگرایی در حالت کلی شامل دو دسته می­باشد: الف) آسیب­های سطحی، ب)آسیب­هایی که بر سازه­های زیرزمینی وارد می­ شود. با توجه به اینکه خرابی­های سطحی پس از زمین­لرزه قابل رویت می­باشند، مطالعات گسترده­ای در ارتباط با آن­ها صورت گرفته است. با این وجود به دلیل کمبود شواهد صحرایی حاصل از

خرید اینترنتی فایل متن کامل :

 

 مقالات و پایان نامه ارشد

 ابزاربندی[13] و نیز پیچیدگی مدلسازی خسارات ناشی از روانگرایی بر روی سازه­های زیرزمینی، مطالعات صورت گرفته در زمینه دسته دوم آسیب­ها محدود و گاها بحث­برانگیز است [14-12].

در ادامه این بخش، در ابتدا به آسیب­های سطحی ناشی از روانگرایی به اختصار اشاره می­گردد و سپس آسیب­هایی که امکان وقوع آن­ها در سازه­های زیرزمینی وجود دارد، با تفصیل بیشتری مورد بحث قرار می­گیرند.
2-3-1-آسیب­های سطحی
از جمله آسیب­های سطحی ناشی از روانگرایی خاک­ها، می­توان به فوران ماسه، نشست و گسترش جانبی زمین و خسارات ناشی از حرکت رو به بالای سازه­های زیرزمینی اشاره نمود . در شکل 2-2 نمونه واقعی این خرابی­ها نشان داده شده است.
آسیب­های ناشی از روانگرایی بر سازه­های زیرزمینی
تاسیسات[1] زیرزمینی که در اعماق کم در خاک­ها احداث می­گردند، امروزه کاربردهای وسیعی از خطوط لوله[2]کوچک (از قبیل خطوط لوله­ای که برای انتقال گاز طبیعی و ذخیره آب استفاده می­شوند) گرفته تا سازه­های زیرزمینی بزرگ (نظیر مترو، راه­آهن و تونل­های بزرگراه) پیدا کرده ­اند.
از نظر تاریخی، گزارش­های مربوط به خسارات ناشی از روانگرایی خاک­ها در سازه­های زیرزمینی، در مقایسه با سازه­های سطحی، کمتر بوده است. با این وجود گزارش­های متعددی وجود دارد که مبین درجات مختلفی از آسیب­ها در تونل­ها و فضاهای زیرزمینی است. در اثر وقوع زمین­لرزه کوبه[3] در سال 1995 خسارات متعددی به سیستم مترو، نظیر ریزش ایستگاه دایکای[4]، وارد شد. در طی زلزله دوزکه[5] (1999) در ترکیه، یک تونل بزرگراه دچار ریزش شد. زمین­لرزه تایوان[6] (1999) نیز خسارات شدیدی بر تونل­های کوهستانی در مرکز شهر بوجود آورد. خرابی­های ایجاد شده در سازه­های زیرزمینی بزرگ، هم­چنین در زمین­لرزه­های دیگر نظیر تانگشان[7] (1976) در چین و لوما پریتا[8] (1989) در آمریکا نیز مشاهده شده است [16].
مطالعات انجام گرفته در خصوص خرابی­های سازه­های زیرزمینی بزرگ که در طی بارگذاری زلزله اتفاق می­افتد، عمدتا شامل بررسی رفتار سازه­های محصور شده بوسیله خاک­های غیر روانگرا است [17، 18]. بر اساس این مطالعات، روش­هایی نیز جهت طراحی مقاوم آنها در برابر بارهای لرزه­ای ارائه گشته است [18]. در مقابل، اگرچه روانگرایی خاک­های اطراف ممکن است منجر به آسیب­های جدی گردد، مطالعات عددی [12، 16، 22-19] و آزمایشگاهی [23] کمی در خصوص رفتار لرزه­ای سازه­های زیرزمینی بزرگ محصور با خاک روانگرا می ­تواند یافت شودکه در این میان روش­های عددی تایید شده[9] نظیر روش المان محدود، به طور موفقیت­آمیزی به منظور تحلیل این سازه­ها و مسائل اندرکنش خاک و سازه مورد استفاده قرار گرفته­اند.
بر اساس این مطالعات، به استثنای برکنش سازه در اثر روانگرایی، پاسخ لرزه­ای درون صفحه­ای سازه­های زیرزمینی مشابه عملکرد گزارش شده آن­ها در خاک­های غیر روانگرا است [16].
2-3-2-1- انواع خرابی­های سازه­های زیرزمینی در اثر وقوع روانگرایی
بر اساس مشاهدات به دست آمده، از جمله آسیب­های ناشی از روانگرایی بر سازه­های زیرزمینی می­توان به حرکت رو به بالای سازه در اثر فشار بالا برنده ناشی از افزایش فشار منفذی در خاک­های روانگرا شده، گسترش جانبی زمین و نشست سازه در اثر فرایند تحکیم پس از روانگرایی اشاره نمود [3، 12، 16، 21، 22].
در این میان، حرکت رو به بالای سازه زیرزمینی مورد مطالعات گسترده­ای قرار گرفته است که در ادامه بدان پرداخته می­ شود.
فشار برکنش موثر بر زیر سازه­های زیرزمینی که بوسیله روانگرایی خاک­های اطراف آن ایجاد می­ شود، موجب جابجایی سازه­ها به طرف بالا می­گردد. این جا به ­جایی به سمت بالا آماس سطح زمین را در پی خواهد داشت [3]. برکنش سازه به همراه آماس سطح زمین ناشی از آن، در شکل 2-3 نشان داده شده است. با توجه به این شکل که نمونه ­ای از تحلیل صورت گرفته بوسیله لیو و سونگ[10] [3] است، میزان آماس در سطح زمین با دور شدن از موقعیت سازه به تدریج کاهش می­یابد.
شکل 2-3- وضعیت تونل الف) قبل، ب) پس از وقوع روانگرایی خاک­های اطراف آن [3].
 لیو و سونگ [3]، مکانیزم برکنش سازه را بصورت مراحل زیر بیان نموده ­اند:

  • توسعه[11] اضافه فشار منفذی منجر به کاهش سریع میزان سفتی خاک­های اطراف سازه­های زیرزمینی می­ شود؛
  • وزن مخصوص موثر[12] کوچک سازه زیرزمینی، به دلیل تفاضل فشارهای قائم موثر بر آن، آن را مستعد برکنش می­سازد و
  • تغییر شکل یا جریان[13] خاک­های اطراف ،در اثر کاهش سفتی، منجر به فشرده شدن[14] خاک­های واقع در زیر سازه شده و سازه را به طرف بالا می­راند[15].

میزان برکنش ناشی از روانگرایی تحت تاثیر عوامل متعددی قرار دارد. برخی از این عوامل عبارتند از:

  • دامنه بارگذاری: با افزایش دامنه شتاب افقی زمین­لرزه، میزان برکنش سازه و آماس سطح زمین افزایش می­یابد؛
 


 
موضوعات: بدون موضوع  لینک ثابت
[جمعه 1400-05-08] [ 10:20:00 ب.ظ ]





1-1- خردایش در آسیاهای گلوله­ای
     تجهیزات نرم كنی كه در صنعت فرآوری مواد معدنی مورد استفاده قرار می گیرند، اغلب از نوع آسیاهای گردان می باشند. انواع مختلفی از آسیاها مانند آسیاهای میله ای، گلوله ای و آسیاهای نوع خودشكن وجود دارند.  عمل نرم كنی با ایجاد حركت نسبی بین ذرات ماده معدنی و واسطه خردایش (میله، گلوله یا قلوه سنگ) انجام می شود.  این حركت می تواند بصورت برخورد همراه با شكست كه توسط ضربه اعمال می شود و یا بصورت غلطش همراه با شكست كه سایش را ایجاد می كند، انجام گیرد[1]. هدف از خردایش سنگ معدن جداسازی کانی های با ارزش از گانگ است؛ در خردایش اولیه ذرات با ارزش به درجه آزادی لازم نمی رسند به همین دلیل سنگ معدن به خردایش ثانویه نیاز پیدا می­ کند که این عمل توسط آسیا­ها انجام می­ شود[2].

شکل1- 1- نحوه­ خردایش ذرات در آسیاهای گردان[2].

    جدار داخلی آسیا­ها از جنس مقاومی پوشیده شده است و قسمتی از حجم آنها توسط بار خردکننده­­ای مثل میله­های فولادی، گلوله­های فولادی یا سرامیکی، قلوه­سنگهایی از جنس مقاوم و یا قطعات درشتی از خود ماده معدنی پر شده است. با گردش آسیا، بار خرد کننده تا ارتفاعی که بستگی به سرعت گردش آن دارد، بالا می رود و با رها شدن از بدنه­ی آسیا بر روی ماده معدنی سقوط می­ کند. در نتیجه، دانه­ های ماده معدنی در اثر ضربه، فشار و سایش مواد توسط یکدیگر یا توسط بار خردکننده و همچنین جدار داخلی آسیا خرد می­شوند (شکل1-1­)[3].
در آسیاهای گلوله­ ای،  با قرار گرفتن ذرات بین گلوله­ها عمل خردایش صورت می­گیرد(شکل1- 2)[4]

شکل ‏2‑1-خردایش ذرات توسط گلوله در آسیا گلوله­ای[4].
شکل1- 2- خردایش ذرات در آسیا گلوله ای[4].

1-1-1- عوامل مؤثر بر خردایش آسیاهای گلوله­ای
     كارآیی آسیاهای گلوله‌ای، میزان كاهش انرژی مورد نیاز برای خردایش مناسب هر تن ماده معدنی تعریف می‌شود. کارآیی آسیاکنی به حرکت گلوله­ها در طی فرایند آسیا­کنی و شرایط عملیاتی از قبیل سرعت گردش آسیا، پرشدگی گلوله، اندازه آسیا بستگی دارد[5]. از دیگر عوامل مؤثر بر آسیاکنی می ­توان به ابعاد و شكل آسترهای آسیا، نحوه‌ی آماده سازی خوراك، بسته یا باز بودن مدار اشاره نمود. برای بهبود خردایش باید عواملی مانند درصد جامد وزنی پالپ ورودی، میزان پرشدگی گلوله داخل آسیا و اندازه گلوله‌های شارژ مجدد را بهینه كرد زیرا عوامل دیگر قابل تغییر نیستند و یا به علت نوسان زیاد قابل کنترل نمی‌باشند. دانسیته پالپ خوراک باید تا آنجا که امکان دارد بالا باشد ولی با جریان یافتن پالپ در طول آسیا سازگار باشد و معمولاً گلوله‌ها باید با لایه­ای از کانه پوشیده شوند. پالپ رقیق باعث افزایش برخورد فلز با فلز و مصرف بیش از حد فلز می‌شود و کارآیی را نیز کاهش می‌دهد. درصد جامد آسیاهای گلوله‌ای بسته به نوع کانه، بین 65-80‌%  پالپ است. ویسکوزیته پالپ با کاهش اندازه ذرات افزایش می‌یابد بنابر این در مواردی که خردایش بسیار ریز نیاز است، درصد جامد باید کمتر درنظر گرفته شود[3].
1-1-1-1- سرعت گردش آسیا
     سرعت گردش آسیاهای گردان به نحوی انتخاب می­ شود که سرعت نسبی سقوط بارخردکننده بر روی بار ورودی آسیا حداکثر باشد. مسیر بار خردکننده را می­توان به دو مرحله تقسیم کرد. در مرحله­ اول این بار به حالت چسبیده بر روی جدار داخلی آسیا، یک مسیر صعودی را طی می­ کند. در مرحله دوم در لحظه­ای که وزن این بار از نیروی گریز از مرکز تجاوز می­ کند، از جدار آسیا رها می­ شود و سقوط می­ کند. هرگاه سرعت دوران آسیا از حدی که آنرا “سرعت بحرانی[1]”  می­نامند تجاوز کند، نیروی گریز از مرکز در تمام طول مسیر بیشتر از نیروی وزن است و بار خردکننده در تمام مدت گردش دستگاه به جدار داخلی آسیا چسبیده باقی خواهند ماند.(شکل1-3)[6].
شکل1- 3- شمای حرکت بار داخل آسیا نسبت به سرعت بحرانی 60%a=، 70%b=، 80%c=، 90%d= [6]
1-1-1-2- پرشدگی داخل آسیا
کاهش سطح بار در داخل آسیا باعث می­ شود که حرکت آبشاری بار در سطح آزاد داخل آسیا به درستی صورت نگیرد(شکل1-4)[6]. این مسئله منجر به برخورد بار به آستر و سایش آن و همچنین عمل خردایش ذرات به درستی صورت نمی­گیرد[6].
شکل1- 4- شمای حرکت ذرات داخل آسیا درسطوح مختلف بار 50%=a، 40%=b، 30%=c، 20%=d، 10%=a [6].
1-1-1-3- زاویه بالابری
میزان فرسایش پوشش آسیاها علاوه بر جنس پوششها، به نحو­ه­ی کار آسیا بستگی دارد. این فرسایش در آسیاهایی که با سرعتی حرکت می­ کنند که بار خردکننده در داخل آنها بر روی هم می­غلتد، به مراتب بیشتر از حالتی است که بار خردکننده بر روی هم سقوط کند[7]. مطالعاتی که توسط Bond انجام شده، نشان داده است که به طور متوسط فرسایش آسترها و همچنین بار خردکننده، متناسب با انرژی مصرف شده در آسیا است.  با گذشت زمان زاویه و ارتفاع بالابرها کاهش می­یابد. زاویه رهایی بالابرها بر حرکت بار داخل آسیا و برخورد بار به پاشنه تأثیر گذار است. کاهش بیش از حد زاویه رهایی منجر به عدم تشکیل حرکت آبشاری بار و عدم خردایش
ذرات طی مکانیزم ضربه می­ شود(شکل 1-5) [6].
 شکل1- 5- ارتباط حرکت بار داخل آسیا با زاویه بالابری  85=a، 60=b، 45=c، 5/22=d[6].
1-1-1-4- شکل بالابرها
در آسیا، آسترها اغلب به صورت بالا-پایین نصب می­شوند. بدین صورت که یکی بلند و دیگری کوتاه است. سایش بالابر با ارتفاع کم­تر، بیشتر از بالابر بلند می­باشد در نتیجه زمانیکه بالابر بلند به نصف ارتفاع اولیه خود رسید بالابر کوچکتر را باید تعویض نمود[2]. حرکت بار داخل آسیا با توجه به تعداد بالابرها و شکل آنها متفاوت خواهد بود(شکل1-6).
  شکل1- 6- ارتباط حرکت بار داخل آسیا با شکل وتعداد بالابرها[6].
1-1-1-5- پرشدگی گلوله
    میزان پرشدگی گلوله یكی از مهم‌ترین پارامترهای آسیاكنی در آسیاهای گلوله‌ای است. در میزان كم پرشدگی به علت كشیدگی بار به طرف شانه و نبود كشیدگی بار به طرف پاشنه، سهم مكانیزم ضربه از مكانیزم سایش بیشتر است كه این امر موجب درشت‌تر شدن محصول می‌گردد [2].  با افزایش پرشدگی، سهم مكانیزم سایش نیز به علت تشكیل پاشنه و سر خوردن بیشتر گلوله‌ها روی بار، زیادتر می‌شود كه باعث ریز‌تر شدن محصول می‌گردد همچنین میزان پرشدگی بالا باعث افزایش ضربات در واحد حجم شده و مانع خروج سریع پالپ در طول آسیا می‌شود [8]. میزان پرشدگی گلوله داخل آسیا در حدود 40-50 % است که در حدود 40% از این حجم، فضای خالی است. توان کشی آسیا با افزایش میزان پرشدگی افزایش می‌یابد و در حدود 50% پرشدگی به بالاترین میزان توان کشی می‌رسد. معمولاً در آسیاهای سرریز شونده میزان پرشدگی 40% است اما در آسیاهای دارای شبکه خروجی این مقدار بیشتر است. برای محاسبه میزان پرشدگی گلوله، سطح گلوله­ها تا سقف آسیا اندازه ­گیری می­ شود [2،3].
1-2- هیدروسیکلون
     هیدروسیکلون مهم ترین وسیله برای طبقه بندی ذرات در ابعاد ریز در صنعت کانه آرائی می باشد.  درصنعت فرآوری آهن یكی از معادن كمپانی اریك[2] كلاسیفایر های مارپیچی خودرا از مدار خارج و به جای آنها از هیدروسیكلون استفاده نمود كه مزایای زیررا به دنبال داشت:

  • حد جدایش به راحتی قابل كنترل بود.
  • مصرف آب كاهش یافت.
  • میزان هزینه های اولیه كاهش یافت.
  • حجم فضای مصرفی كاهش یافت.
  • باردرگردش به راحتی قابل كنترل بود[1].

     به خاطر اینكه هیدروسیكلونها از لحاظ ساختاری و مكانیكی بسیار ساده اند و اجزای متحرك نیز ندارند، امكان تحقیقات پیشرفته با صرف زمان كمتری نسبت به كلاسیفایر های پیچیده تر برای آنها وجود دارد.  به همین دلیل است این وسیله توانست خیلی زودجای خود را در صنایع گوناگون باز كند[9] . موادی که به حالت پالپ به داخل هیدروسیکلون هدایت می شوند تحت تأثیر دو نیرو قرار می گیرند: نیروی گریز از مرکز در جهت داخل به خارج و نیروی مقاومت در جهت خارج به داخل، نیروی گریز از مرکز باعث افزایش سرعت ته نشینی مواد می شود. به این ترتیب مواد بر اساس ابعاد و چگالی طبقه بندی می شوند[10].  ذرات با سرعت ته نشینی زیاد به سمت دیواره حركت می­كنند. و از دهانه ته ریز بیرون می ­روند. به دلیل عمل نیروی مقاومت سیال، ذرات با سرعت ته نشینی كم به سمت منطقه كم فشار در امتداد محور حركت می كنند و به طرف بالا از طریق دیافراگم به سر ریز حمل می ­­ ­شوند. با توجه به وجود ناحیه ای در امتداد جداره که در آن حرکت مواد به طرف پایین و ناحیه ای در امتداد محور هیدرو سیکلون که در آن حرکت مواد به سمت بالا است، لازم است که در مکانی سرعت قائم مواد برابر صفر باشد. این مکان به صورت سطحی در سرتاسر بخش بزرگی از هیدرو سیکلون گسترش یافته است. دانه هایی که تأثیر نیروی گریز از مرکز روی آنها بیشتر است به خارج این سطح منتقل شده، از طریق ته ریز خارج می شوند و دانه هایی که تأثیر نیروی مقاومت بر آنها بیشتر است در داخل این سطح قرار می گیرند و به طرف محور هدایت شده و از طریق سرریز خارج می ­شوند. ذرات منطقه با سرعت صفر[3] دارای احتمال مساوی برای انتقال به سرریز و یا خروج از ته ریز می باشند [11].
عملکرد هیدروسیکلون به عوامل زیر وابسته است:
–  خصوصیات جریان خوراک شامل:                                                                                                                                               

  • اندازه و توزیع دانه بندی ذرات جامد داخل جریان خوراک
  • فشار ورودی جریان خوراک
  • خرید اینترنتی فایل متن کامل :

     

     مقالات و پایان نامه ارشد

  •  

  • دانسیته پالپ، درصد جامد و ویسکوزیته جریان خوراک

–  هندسه ی هیدروسیکلون شامل:

  • شکل و مساحت دهانه ی ورودی
  • ابعاد هیدروسیکلون (طول بخش استوانه ای، طول کلی و زاویه بخش مخروطی)
  • قطر داخلی، سرریز و ته ریز هیدروسیکلون [11،12].

1-2-1- طراحی بخش­های مختلف هیدروسیکلون
1-2-1-1- بخش ورودی به هیدروسیکلون
1-2-1-2- بخش استوانه­ای
     معمولاً هیدروسیكلون‌ها داری بخش استوانه‌ای می‌باشند كه طول آن برابر قطر هیدروسیكلون می‌باشد. این بخش می‌تواند جدا باشد و یا با بخش ورودی خوراك تركیب شده باشد. بخش استوانه‌ای بلندتر، باعث افزایش زمان ماند مواد و ظرفیت می شود و سرعت مماسی را كاهش می­دهد. افزایش در فشار ثابت، بین 8 تا 10درصد مشاهده شده است. هیدروسیكلون‌های بزرگتر (66 -84 سانتی‌متر) معمولاً دارای بخش استوانه‌ای كوتاه تر می‌باشند[12].
1-2-1-3- بخش مخروطی
     زاویه بخش مخروطی با توجه به نوع كاربرد، متفاوت است. ولی معمولا 20 درجه است. هیدروسیكلون هایی كه دارای ته صاف می باشند، برای جدایش های درشت تر كه حد جدایش آنها 2 تا 3 برابر هیدروسیكلون های معمول است بكار گرفته می شود. مخروط بلندتر با زوایه 10 درجه، جدایش ریزتری را با ظرفیت بیشتر نسبت به هیدروسیكلون 20 درجه فراهم می كند.استفاده از این زوایه، باعث تغییر 15 تا 20 درصدی در حد جدایش پیش بینی شده می گردد[12،10].
1-2-1-4- بخش پیداکننده گرداب
     معمولاً دامنه ای از پیدا كنند ه های گرداب با اندازه های مختلف، برای هر مدل وجود دارد. اندازه پیدا كننده گرداب بین 20 تا 45 درصد قطر هیدروسیكلون متغیر است. پیدا كننده های گرداب بزرگتر، ظرفیت را افزایش می دهند ولی منجر به جدایش نسبتاً درشتتری می گردند [12].
1-2-1-5- بخش ته­ریز
     زاویه دهانه و طراحی آن، تاثیر زیادی بر كارآیی هیدروسیكلون دارد. بهترین نتیجه زمانی است كه جدایش مورد نظر با بالاترین درصد جامد ته ریز بدست آید. معمولاً اندازه دهانه بر اساس عبور میزان ذرات مورد نظر با بالاترین دانسیته پالپ تعیین می شود. در اكثر موارد، تغییر دهانه ته ریز با تغییر زاویه دهانه همراه است كه این بر حد جدایش مورد انتظار تاثیر می گذارد. زاویه خروجی مواد از دهانه ته ریز نشانگر نحوه كار آن م یباشد. زمانی كه زاویه خیلی باز باشد، نشان دهنده بزرگی دهانه ته ریز است و برعكس، طناب شدگی ته ریز (زاویه خیلی كم) نشان از كوچك بودن دهانه دارد[12].
1-3- عوامل مؤثر بر عملکرد جداکننده­ های مغناطیسی تر
     با در نظر داشتن نیروهای مؤثر بر فرایند جدایش مغناطیسی، می توان پارامتر های تأثیر گذار بر عملکرد جداکننده های مغناطیسی تر را به دو دسته کلی، پارامترهای دستگاهی و پارامترهای عملیاتی تقسیم نمود. مسائلی مانند دانه بندی خوراک، درصد جامد، تناژ جامد ورودی و حجم اسلاری به ازای هر متر طول استوانه از جمله پارامتر های عملیاتی محسوب می شوند و مسائلی مانند شدت میدان مغناطیسی ، گرادیان میدان مغناطیسی، فاصله استوانه از تانک در محل ورود خوراک و خروج کنسانتره، سرعت و جهت چرخش استوانه از جمله پارامترهای دستگاهی مؤثر بر عملکرد  جداکننده های تر هستند[13].
1-4- معرفی خط چهارم تولید کنسانتره شرکت معدنی و صنعتی گل­گهر
     شركت سنگ آهن گل گهر جهت افزایش ظرفیت تولید كنسانتره به میزان2 میلیون تن در سال، اقدام به احداث كارخانه فرآوری با این منظور نموده است كه خوراك اولیه در نظر گرفته شده برای این كارخانه تركیبی از بار برگشتی تولیدی در مدار آسیاهای خشك نیمه خودشكن خطوط تغلیظ موجود و سنگ آهن استخراجی از معدن(بخش سنگ ­شکنی) به ترتیب با نسبت وزنی 30% و 70% می باشد.
1-4-1- بخش سنگ­شکنی
     مواد ورودی از دو سمت کارخانه (سیلو های زمینی) و از طریق دو نوارنقاله مجزا به ساختمان HPGR شارژ می شوند. از یک سمت(غرب) سنگ خرد شده (حاصل از انفجار) با حداکثر اندازه 1200 میلی متر توسط تراک های معدنی وارد بخش سنگ شکنی می شود. در این بخش بعد از تفکیک بار روی خوراک دهنده گریزلی[4] ابعاد (1200-150 میلیمتر) وارد سنگ شکن فکی[5] می شود که دارای ظرفیت 850 تن در ساعت است و ابعاد محصول به حداکثر200 میلی متر تقلیل می یابد. بعد از این مرحله سنگ خرد شده در پایل روباز میانی انبار می شود و پس از آن از طریق تغذیه کننده های زیر پایل وارد مرحله بعدی سرند و سنگ شکنی موسوم به ثانویه می شود. در این جا بعد از گذر از یک سرند 2 طبقه ابعاد بالای 50 میلی متر وارد سنگ شکن مخروطی استاندارد[6] شده و به کمتر از 55 میلی متر کاهش می یابد و دوباره به سرند بالادستش بر میگردد. ابعاد زیر 50 میلی متر نیز به دو بخش تقسیم می شوند. دانه بندی بین 16 تا50 میلی متر وارد مرحله سوم سنگ شکنی (مخروطی سر کوتاه[7]) می شود و ریز دانه های کمتر از 16 میلی متر نیز جهت انبار در پایل سنگ خرد شده به انبار انباشت و برداشت[8] روباز انتقال می یابند. لازم بذکر است که مرحله سوم سنگ شکنی و سرند متشکل از دو سنگ شکن مخروطی و دو سرند یک طبقه است. ابعاد بین 16 تا 50 میلی متر که وارد این سنگ شکن ها می شوند به کمتر از 20 میلی متر کاهش یافته و پس از عبور از سرند دانه بندی کوچک تر از 16 میلی متر به انبار انباشت و برداشت هدایت شده و ابعاد بزرگ تر مجددا به سنگ شکن های مخروطی سوم برگردانده می شوند.پس از این بخش محصول نهایی خط سنگ شکنی با حداکثر ابعاد 20 میلی متر و با نرخ 850 تن ساعت وارد بخش انباشت و برداشت می شود.این مجموعه توانایی ذخیره(انباشت) سنگ خرد شده با ظرفیت یاد شده و برداشت آن با نرخ حداکثر 770 تن بر ساعت را داراست. قابل ذکر است که انبار ذکر شده از نوع روباز بوده و دارای دو پایل طولی در امتداد هم با طول تقریبی 300 متر و پهنای 35 متر می باشد. ظرفیت این دو پایل مجموعا 1147000 تن خواهد بود. خروجی این بخش به سیلوی زمینی انقال پیدا کرده و بوسیله ی تغذیه کننده های ویبره­ای[9] به ساختمان HPGR  وارد می شود. این بار 70 درصد بار ورودی کارخانه را تشکیل می دهد و با نرخ 368 تن در ساعت سرند گریزلی[10] را شارژ می کند(شکل 1-7). از جمله خصوصیات این بار می­ توان به حداقل 2/54 درصد آهن و حداکثر 8/2درصد گوگرد آن اشاره کرد.

 


 
موضوعات: بدون موضوع  لینک ثابت
 [ 10:20:00 ب.ظ ]





تقاضای جهانی برای فلزات مدام در حال افزایش است. اما اکتشافات جدید کانسارهای فلزی کاهش‌یافته و عیار این کانسارها کمتر شده و پیچیدگی آن‌ ها افزایش یافته است. بنابراین روش‌های فرآوری برای کانه های کم عیار و کنسانتره های باکیفیت پایین تنها به روش‌هایی محدود می‌شوند که در عمل اقتصادی باشند [1-2].
طلا یکی از فلزاتی است که به علت کمیابی آن در طبیعت و پایداری جلای فلزی از اهمیت بالایی برخوردار است. این فلز در طبیعت بیشتر به صورت آزاد و در مقادیر بسیار کم یافت می‌شود. تاریخچه استحصال فلز طلا به پیش از 147000سال پیش بر می‌گردد[3].
اولین روشی که برای استحصال به‌کار گرفته شد، روش ثقلی بود که در استخراج طلا از ذخایر رسوبی و ماسه‌های رودخانه‌ای به‌کار گرفته شد. در این روش طلا به خاطر وزن مخصوص بالای آن به راحتی از باطله‌ی همراه آن جدا می­شد. با توجه به این که این روش بازیابی بالایی نداشت، لذا روش‌های مختلف انحلال طلا مورد بررسی قرار گرفت[3].
هیدرومتالورژی طلا، یا روش‌های انحلال، برای هر دو نوع ذخایر رسوبی و غیر رسوبی قابل‌استفاده می­باشد.
در این روش طلا به صورت انتخابی از سایر ترکیبات همراه آن به وسیله روش انحلال جدا می­ شود. روش‌های متعددی برای انحلال طلا وجود دارد. قدیمی‌ترین این روش­ها، روش ملغمه سازی است که امروزه استفاده از آن منسوخ گردیده است [4].
طلا یا زر عنصری است که در تناوب ششم و گروهLb  (همراه مس و نقره) فلزات واسطه در جدول تناوبـی قرار دارد. طـلای خالص فلـزی با رنگ زرد بـراق، عدد اتـمی 79، جرم اتمی 2/179، چگالی g/cm3 32/19 در k273، دارای ساختار FCC می­باشد. طلا فلزی بسیار نرم و چکش‏خوار بوده و دارای عدد سختی Kg/mm2  95 -40 در مقیاس ویکرز می‏باشد. نقطه ذوب و جوش آن به ترتیب C°1064 و  C° 2808 بوده و رسانایی الکتریکی و گرمایی فوق‏العاده زیادی دارد[5].
طلا فلزی است که در طبیعت به صورت آزاد یافت می‌شود و تنها ترکیبات طلا که در طبیعت وجود دارند تلوریدها و استیبنیت‌ها (AuSb2 و AuTe2) هستند. فلز طلا معمولاً به همراه کوارتز و پیریت  و به صورت رگه‌های رسوبی و پلاسری یافت می‌شوند. طلا تنها فلزی است که در هوا و آب به وسیله اکسیژن و یا گوگرد اکسید نمی‌شود.
هر کدام از این روش­های فوق مشکلات خاص مربوط به خود را داشته و لذا در صنعت به طور کامل مورد پذیرش واقع نشده ­اند. از جمله مشکلاتی که این روش­ها با آن روبرو هستند می­توان به هزینه بالای این روش­ها و نیز محدود بودن کاربرد آن‌ ها به چند نوع کانه خاص اشاره کرد.
با توجه به زیان­های زیست محیطی سیانور و هزینه­ آن، در این پروژه، میزان سیانور و عوامل موثر بر آن برای برای رسیدن به بازیابی حداکثر بهینه شد.
نمونه مورد استفاده در این تحقیق کنسانتره اکسیدی سرب و روی شرکت دل آسا واقع در شهرستان سراب (آذربایجان شرقی) می‌باشد؛ که جهت بهینه‌سازی پارامترهای عملیاتی لیچینگ طلا از این کنسانتره جهت رسیدن به بالاترین بازیابی طلا استفاده شد.
2-1- شیمی انحلال طلا
انحلال طلا در محلول‌های آبی ترکیبی از فرایندهای اُکسایش و کمپلکس سازی است. در حضور لیگاندهای تشکیل‌دهنده کمپلکس، کاتیون‌های طلای یک و سه ظرفیتی تشکیل کمپلکس‌های پایدار می‌دهند و یا به وسیله آب به طلای فلزی احیاء می‌شوند [4].
همچنین اغلب لازم است که برای تنظیم pH،  مقداری که برای انحلال طلا مورد نیاز است از اسید یا باز استفاده شود .از دیدگاه الکتروشیمی، انحلال مواد فلزی جامد، یک فرایند الکتروشیمیایی است که شامل واکنش‌های آندی (اکسیدکننده) و کاتدی (کاهنده) به صورت جداگانه می‌باشند[9]. برای انحلال طلا در واکنش‌های آبی، فرایند آندی، شامل اُکسایش طلا بر طبق واکنش‌های (2-1) و (2-2) است:

 

                                E0 489/1=                                           (2‑2)
‏0 E0پتانسیل احیاء استاندارد با واحد ولت می‌باشد. فرایند کاتدی که به طور همزمان با واکنش‌های بالا اتفاق می‌افتد شامل احیاء یک اکسیدکننده مناسب است. همان طور که از پتانسیل احیاء معادلات (2-1) و (2-2) مشاهده می‌شود در غیاب لیگاندهای کمپلکس کننده، یون‌های یک و سه ظرفیتی طلا از لحاظ ترمودینامیکی تحت تمامی شرایط پتانسیلی و pH ناپایدار هستند.
در این پتانسیل‌های بالا، هر دوی یون‌های یک و سه ظرفیتی طلا با اُکسایش آب به اکسیژن، طی واکنش  (2-3) به طور خودبه خودی  به فلز طلا احیاء می‌شوند.

299/1=E0                                                                                                  

 (2‑3)

این بدین معنی است که طلا نمی‌تواند در محلول‌های آبی در غیاب لیگاندهای تشکیل‌دهنده کمپلکس اکسید شود. هر چند که پایداری یون‌های طلا می‌تواند در حضور لیگاندهای مناسب نظیر یون‌های سیانید، کلرید و تیوسولفات، با تشکیل کمپلکس‌های پایدار افزایش یابد.


خرید اینترنتی فایل متن کامل :

 

 مقالات و پایان نامه ارشد

 

 

 (2‑4)

 

‏0(2‑5)
که در آن L یک لیگاند تشکیل‌دهنده کمپلکس است. ثابت‌های پایداری، β2 و  β4 برای Au+ و Au3+ می‌توانند به صورت معادلات زیر باشند.
انحلال طلا در محلول‌های آبی ترکیبی از فرایندهای اُکسایش و کمپلکس سازی است. در حضور لیگاندهای تشکیل‌دهنده کمپلکس، کاتیون‌های طلای یک و سه ظرفیتی تشکیل کمپلکس‌های پایدار می‌دهند و یا به وسیله آب به طلای فلزی احیاء می‌شوند [4].
همچنین اغلب لازم است که برای تنظیم pH،  مقداری که برای انحلال طلا مورد نیاز است از اسید یا باز استفاده شود .از دیدگاه الکتروشیمی، انحلال مواد فلزی جامد، یک فرایند الکتروشیمیایی است که شامل واکنش‌های آندی (اکسیدکننده)  و کاتدی  (کاهنده) به صورت جداگانه می‌باشند[9]. برای انحلال طلا در واکنش‌های آبی، فرایند آندی، شامل اُکسایش طلا بر طبق واکنش‌های (2-1) و (2-2) است:

 

(2‑6)                                                                 v 691/1=E0

                           498 /1=E0  

‏0(2‑7)
  E0پتانسیل احیاء استاندارد با واحد ولت می‌باشد.  فرایند کاتدی که به طور همزمان با واکنش‌های بالا اتفاق می‌افتد شامل احیاء یک اکسیدکننده مناسب است. همان طور که از پتانسیل احیاء معادلات (2-1) و (2-2) مشاهده می‌شود در غیاب لیگاندهای کمپلکس کننده، یون‌های یک و سه ظرفیتی طلا از لحاظ ترمودینامیکی تحت تمامی شرایط پتانسیلی و pH ناپایدار هستند.
در این پتانسیل‌های بالا، هر دوی یون‌های یک و سه ظرفیتی طلا با اُکسایش آب به اکسیژن، طی واکنش  (2-3) به طور خودبه­خودی  به فلز طلا احیاء می‌شوند.

299/1=E0                     
 

‏0(2‑8)
این بدین معنی است که طلا نمی‌تواند در محلول‌های آبی در غیاب لیگاندهای تشکیل‌دهنده کمپلکس اکسید شود. هر چند که پایداری یون‌های طلا می‌تواند در حضور لیگاندهای مناسب نظیر یون‌های سیانید، کلرید و تیوسولفات، با تشکیل کمپلکس‌های پایدار افزایش یابد.

 

 (2‑9) 

 

‏0(2‑10)
که در آن L یک لیگاند تشکیل‌دهنده کمپلکس است. ثابت‌های پایداری، β2 و  β4 برای Au+ و Au3+ می‌توانند به صورت معادلات زیر باشند.

 

‏0(2‑11)

 

‏0(2‑12)
با ترکیب معادلات (2-1) و (2-4)، معادله (2-8) به دست می‌آید. پتانسیل احیاء استاندارد در دمای 25 درجه سانتی‌گراد به وسیله‌ی معادله (2-9) بر طبق معادله نرنست به صورت زیر است.

 

 (2‑13)

 

‏0(2‑14)
که در آن n تعداد  الکترون‌های درگیر در واکنش (در این‌جا برابر 1) است. به طور مشابه، معادله‌های (2-10) و (2-11) می‌تواند به دست بیایند (3 = n):

 

تعداد زیادی از لیگاندها وجود دارند که کمپلکس‌های طلای یک و سه ظرفیتی با محدوده پایداری وسیعی را تشکیل می‌دهند. بعضی از این کمپلکس ها در جدول (2-1) آمده‌اند. در این جدول ثابت‌های پایداری و پتانسیل‌های احیاء استاندارد واکنش‌های مربوط نیز ارائه شده است. به طور کلی دو قانون عمومی در این رابطه به‌کار گرفته می‌شود. اولین قانون این است که پایداری کمپلکس‌های طلا با افزایش الکترونگاتیویته اتم دهنده کاهش می‌یابد. برای مثال، پایداری برای کمپلکس‌های هالید طلا در محلول آبی از ترتیب زیر پیروی می‌کند :

 


 
موضوعات: بدون موضوع  لینک ثابت
 [ 10:19:00 ب.ظ ]





در این فصل ابتدا به بررسی زاویه بهینه و بیشینه انرژی دریافتی در کلکتورهای خورشیدی و پانل های فتوو لتاییک می پردازیم و در ادامه زاویه هلیواستات ها در نیروگاه خورشیدی را مورد بررسی قرار می دهیم.
2-2 مباحث لازم از انرژی خورشیدی
در شکل 2-1 نمایی کلی از یک کلکتور خورشیدی قابل مشاهده می باشد. همان گونه که در شکل مشاهده می شود جهت و موقعیت هر صفحه در هر لحظه توسط دو زاویه شیب و سمت الرأس مشخص می شود که به ترتیب عبارتند از:

  • زاویه شیب (Slope angle ) : عبارت است از زاویه بین صفحه مورد نظر و سطح افق.    ( به این معنی است که سطح صفحه مورد نظر رو به پایین است).
  • زاویه سمت الراس صفحه (Surface azimuth angle) : اگر راستای عمود بر سطح صفحه مورد نظر را بر صفحه افق تصویر کنیم، راستای این تصویر با راستای نصف النهار محلی زاویه ای می سازد که همان زاویه سمت صفحه می باشد. اگر راستای تصویر در امتداد شمال به جنوب باشد، صفرخواهد بود. شرق منفی و غرب مثبت در نظر گرفته می شود.
 شکل 2-1 نمایی کلی از یک کلکتور خورشیدی
 

زوایای مشخص کننده موقعیت خورشید نسبت به محل مورد نظر  ،  و  می باشند که به تریب عبارتند از:

  • زاویه سمت الرأس خورشید (Zenith angle) : راستایی که مکان مورد نظر را به خورشید متصل می کند، با راستای قائم زاویه ای می سازد که همان زاویه سمت الرأس خورشید است.
  • زاویه ارتفاع خورشید (Solar altitude angle) : زاویه ای است که خط واصل خورشید و مکان مورد نظر با افق می سازد. در واقع زاویه ارتفاع خورشید متمم زاویه سمت الرأس است.
  • زاویه سمت خورشید (Solar azimuth angle) : زاویه ای است که تصویر راستای تابش خورشید بر سطح افق، با راستای شمال به جنوب می سازد. علامت مانند  مشخص می شود.

شکل 2-2 زوایای معرفی شده را نشان می دهد.

خرید اینترنتی فایل متن کامل :

 

 مقالات و پایان نامه ارشد

 

 
شکل 2-2 زوایای مشخص کننده جهت و وضعیت صفحه و نیز زوایای مشخص کننده موقعت خورشید [19]

زوایای اصلی ،  و  که با بهره گرفتن از آن ها می توان جهت تابش خورشید را محاسبه کرد به ترتیب عبارتند از:

  • زاویه عرض خغرافیایی (Latitude angle) : اگر مرکز زمین را به مکان مورد نظر روی سطح زمین متصل کنیم، خط واصل با صفحه استوا زاویه ای می سازد که همان عرض جغرافیایی می باشد که در نیم کره شمالی مثبت و در نیم کره جنوبی منفی در نظر گرفته می شود.
  • زاویه ساعت (Hour angle) : خط واصل مرکز زمین و مرکز خورشید و نیز خط متصل کننده مرکز زمین به مکان مورد نظر روی سطح زمین را در نظر می گیریم. زاویه ساعت عبارت است از زاویه بین تصویر این دو خط در صفحه استوا. ازنظر علامت در صبح منفی و در بعد از ظهر مثبت در نظر گرفته می شود. زاویه ساعت به دلیل چرخش زمین حول محور خود، در هر ساعت  تغییر می کند.
  • زاویه میل (Declination angle) : خطی که مرکز زمین و خورشید را به هم متصل می کند، با تصویرش در صفحه استوا زاویه ای می سازد که همان زاویه میل می باشد که از رابطه زیر محاسبه می شود:
   

در این رابطه شماره روز میلادی است. شکل 2-3 زوایای  ،  و  را نشان می دهد.

 
شکل 2-3 زوایای اصلی عرض خغرافیایی، ساعت و میل [32]

2-3 محاسبه شدت تشعشع کل دریافتی روی یک سطح
اطلاعات مربوط به تشعشع کل خورشید روی یک سطح افقی معمولاً در دسترس می‌باشد که با بهره گرفتن از آن می توان انرژی رسیده به سطوح شیب دار را محاسبه کرد. تشعشع کل روزانه  (میانگین روزانهیا میانگین ماهیانه مقادیر روزانه) برابر با مجموع تابش مستقیم، تابش پخشی و تابش انعکاسی می‌باشد [19].

 


 
موضوعات: بدون موضوع  لینک ثابت
 [ 10:18:00 ب.ظ ]





هدف اصلی از این فصل تشریح کامل صورت مسئله به همراه فرضیات لازم است. سپس به نحوة استخراج معادلات حاکم به همراه شرایط مرزی لازم به منظور حل عددی پرداخته شده است، بدین ترتیب که با مروری بر خواص جریان آشفته در مقایسه با جریان آرام و با بررسی چند مدل، مدل انتخابی بکار رفته در این تحقیق ارائه می­ شود. در نهایت با معرفی پارامترهای بی‌بعد، شکل بدون بعد معادلات به همراه شرایط مرزی بدست می‌آیند.
2-2 هندسه مسئله

 
شکل 2-1 شکل مسئله

خواص هوا در مسئلة معیار جهت اعتبارسنجی در دمای ورودی  ارزیابی شده است، بطوریکه چگالی  برابر با ، ویسکوزیته مولکولی  برابر با ، گرمای ویژه  برابر با  و عدد پرانتل  برابر با  می­باشد. همچنین عدد رینولدز برابر با  بوده، که بر مبنای سرعت مرکز لوله  و ارتفاع پله بدست آمده است.
2-3 مروری بر خواص جریان آشفته در مقایسه با جریان آرام
یک جریان آشفته، به واسطة ادیهای موجود در ساختار خود از یک جریان آرام تمیز داده می­ شود. ادیهای موجود در جریان آشفته باعث ایجاد نوسان[5] در میدان سرعت و دما می­شوند. شایان ذکر است که این ادیها بواسطة حرکات اتفاقی و نامنظم ذرات در یک جریان آشفته و وجود اغتشاشات که باعث یک سری جریانات جانبی در امتداد

خرید اینترنتی فایل متن کامل :

 

 پایان نامه

 عمود بر راستای جریان اصلی می­ شود، بوجود می­آیند. اندازة ساختارهای موجود در جریان آشفته مانند ادیها، می ­تواند از مقادیر نزدیک به مقیاس مولکولی تا بزرگترین طول مقیاس­های جریان باشد.

اغتشاشات دینامیکی[6] که ذات جریان آشفته می­باشد، می ­تواند باعث اختلاط و نیز تبادل شدید مومنتوم و حرارت گردد. از همینرو جریان آشفته، جریانی به شدت اضمحلالی[7]، با ضریب اصطکاک و ضریب انتقال حرارت بالا در مقایسه با جریان آرام محسوب می­ شود. هر چه میزان اغتشاشات در مقیاس بزرگتری رخ دهد، اندازة تبادل مومنتوم و حرارت بزرگتر خواهد بود. بنابراین (با درنظرگرفتن افت فشار افزایش یافته در جریان آشفته)، در مسائل درگیر با انتقال حرارت، آشفته نمودن جریان به هر وسیله ممکن همواره مدنظر مهندسین می­باشد.
پروفیل سرعت جریان آشفته نسبت به جریان آرام، تخت­تر می­باشد، در نتیجه گرادیان سرعت در نزدیکی دیواره و تنش برشی ناشی از آن در جریان آشفته بیش از جریان آرام می­باشد. بواسطة کوپل بودن توزیع سرعت و دما با یکدیگر، افزایش گرادیان سرعت در نزدیکی دیواره باعث افزایش انتقال حرارت از دیواره نیز می­گردد.
همانطور که اشاره شد جریان آشفته شامل ادیهای پیچیده و در اندازه­ های مختلف می­باشد. برای حل کاملاً دقیق یک میدان جریان آشفته با استفادة مستقیم از معادلات بقا، بطوریکه جزئی­ترین پدیده ­ها نیز مدنظر قرارگرفته شده باشد، لازم است از شبکة محاسباتی استفاده کنیم که اندازة المانهای آن کوچکتر از کوچکترین ادیهای موجود در جریان باشد. یعنی هریک از کوچکترین ادیها به تنهایی توسط چند المان کوچکتر گسسته گردند. بدین منظور ابتدا لازم است که اندازة کوچکترین ادیها بر حسب طول مقیاس کولموگروف[8] تعیین گردند.

 


 
موضوعات: بدون موضوع  لینک ثابت
 [ 10:17:00 ب.ظ ]